How earthquakes occur

Jean-Pierre Burg

jean-pierre.burg@erdw.ethz.ch

A brutal surprise

Avenue de La Gare, Nice 1887 (The Illustrated London News)

STATE IN THE AVENUE OF LA SLAND POPE, OF THE MUNICIPAL OF VEH. IN

A question of stress

Stable / unstable displacement

http://earthquake.usgs.gov/research/modeling/animations/

Experimental deformation of rocks

Sketch of a gas-medium deformation rig

applied axial load

Material behaviour

Elastic deformation

linear, elastic deformation

Elastic deformation

No permanent strain i.e. reversible strain

linear relationship between stress and deformation

$$\sigma = E \varepsilon = E(\ell - \ell_0) / \ell_0$$

- E = proportionality coefficient
- Young's or Elasticity-Modulus (same dimensions as stress)

Viscous deformation

ideal, viscous deformation

Viscous deformation

 Newtonian or ideally viscous materials are able to undergo large and permanent strain whose magnitude depends on time

$$\sigma = \eta \dot{\epsilon}$$

 Stress is proportional to strain rate; strain is continuous under constant stress

Proportionality coefficient η = viscosity
Unit : Poise = Dimension of stress multiplied by time
1 poise = 1 dyne cm⁻² * 1 second

Plastic deformation

ideal, plastic deformation

Plastic deformation

No strain <u>below the critical stress</u> or Yield point

• At the critical stress, permanent strain.

The flow stress = a constant (von Mises criterium)

Rocks are elasto-visco-plastic

stable/unstable frictional displacement

Schematic relationship between fault movement and seismic event

Experimental faulting (acoustic emission)

Fault growth

Development of a shear fracture in compression through coalescence of Griffith microcracks

Fault growth

http://earthquake.usgs.gov/research/modeling/animations/

http://earthquake.usgs.gov/research/modeling/animations/

http://www.youtube.com/watch?v=IJ9yjhvjHZw

Paleoseismic record of large earthquakes along the North Anatolian Fault

Fault propagation

Coulomb stresses

Idealised relationship between stress and displacement for initial shear failure and subsequent unstable shear movement on the fault surface

Focal mechanisms

Thrust-fault with P- and T-quadrants and first motion seismograms and associated, lower hemisphere stereographic projection first motion up = push away from epicenter; first motion down= pull toward epicenter

Focal mechanisms

Orientation of the principal stresses P (maximum, compression) T(minimum, extension) and B (intermediate)

Faults at plate boundaries

