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Abstract— This paper presents the implementation of a self-

sustained IPv6 device embedding multiple sensors. The research 

focuses mainly on the implementation of a sleepy node using the 

recent Internet protocols for Wireless Sensor Networks (WSN). 

Based on the popular Contiki operating system, the protocol 

stack has been enhanced by implementing the optimized version 

of the Neighbor Discovery Protocol (RFC6755). The usage of the 

Low Power Listening (LPL) of the RDC layer has been reduced 

improving notably the current consumption of the device. The 

device is equipped with a rechargeable battery and a small solar 

panel allowing to harvest ambient light while performing 

measure of the sensors. The results have shown that the 

optimized version of the ND protocol can saves up to 15 times 

more energy per day than the standard NDP. The devices 

communicate at the application layer over the OMA LwM2M 

protocol and a web application has been implemented for the 

interaction with the nodes. The device consumes 15µW in power 

down mode and about 100µW while performing sensors 

measurement at a reasonability short interval. The device can 

last about 50 days in the dark on a battery of 50mAh and a light 

condition of 1000 lux in average is require to sustain the mean 

power consumption of the device while reporting sensors 

measurement. 

 
Index Terms— Contiki, Internet of Things (IoT), IPv6, NDP, 

LwM2M, WSN 

 

I. INTRODUCTION 

ireless Sensor Network (WSN) is an emerging 

domain and IPv6 is one of the core technologies to 

form the future networks. WSN are composed of a 

large number of sensor nodes that are generally powered by 

batteries that must be purchased, maintained and replaced. 

Energy harvesting presents a straightforward solution for 

easily powering these remotes device by using clean energy. 

Many different types of energy harvesting technologies exist, 

such as solar, vibration, wind, piezoelectric, thermoelectric 

and so on. The most popular source of environmental energy 

is the sun. One reason why solar energy is becoming more 

widely used is that it has a higher power density (about 

15mW/cm
3
) than other renewable energy source, which 

enables wireless sensors nodes to be completely self-

sustained. Connecting a solar powered IPv6 device to the 

Internet is a challenging task and not feasible unless a storage 

element is available allowing the device to run during the 

night. Although ceramic capacitors have an infinite lifetime 

and are simpler to recharge, the energy density of these 

storage elements (1 to 10 J/cm
3
) is too small compared to 

rechargeable batteries (1000 J/cm
3
) and thus not feasible to 

use in our application where the device must be able to run 

during several days in the dark. Although the shelf lifetime of 

secondary batteries is degrading over time due to the recharge 

cycles, they are still more suitable nowadays compared to 

primary batteries in term of environmental impact, especially 

considering that there will always be more of connected 

devices in the future.  

The purpose of this research was to implement an IPv6 

network of self-sustained devices and routers incorporating 

several sensors and by lowering the current consumption as 

much as possible to improve the lifetime of the device. Since 

most of the energy spent by a WSN device is during radio 

transmission, it was of our main concern to reduce the radio 

activities in all layers of the network protocol stack.  Our 

research focus mainly on the implementation of the sleepy 

devices which by definition doesn’t take part in the routing 

protocol of the network and therefore can sleep most of the 

time to save its battery.  

The remainder of the paper is organized as follows. In the 

following section we present the hardware of our IPv6 device. 

In Section III we present the software with the network 

protocol stack and compare the energy performance of the 

standard and optimized version of the NDP protocol. In 

section IV we show our Web Application for the device 

management. We evaluate the overall power consumption of 

the device in Section V. Finally our conclusion is explained in 

Section VI.  

II. IPV6 PLATFORM 

Our self-sustained IPv6 device prototype is shown in Fig. 

1. The processor running on the platform is the CC2538 from 

Texas Instrument which is an ARM Cortex-M3 cadenced at 

16MHz. The platform integrates the following sensors: 

temperature, humidity, pressure, light, a motion detector and a 

voltage/current measurement unit. The power of each sensor is 

controlled individually by the microprocessor reducing the 

power consumption of the system while in deep sleep mode. 

An I
2
C switch separates the connection of each I

2
C interface 

from the sensors chips and thus prevents these latter to be 

power-on from the bus. The gain of current consumption in 

deep sleep thanks to the I
2
C switch is in order of 25µA 

allowing the board to consume only 4.9µA when in deep sleep 

mode and 6.4µA with the motion detector enabled.  
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Fig. 1. Proposed platform. 

The solar panel SLMD121H04L is made of 4 single cells 

of monocrystalline in series with a general size of 43x14mm 

and provides an efficiency of 22%. This solar panel was 

chosen because it can provides 40µW of power in low light 

condition (100 lux) which is sufficient to sustain the power 

consumption of the device while in deep sleep and 400µW at 

1000 lux to sustain the average power consumption of the 

system while performing measures. Since the output power is 

linearly proportional to the amount of light, we calculated the 

slope of the curve to be approximately 0.4µW/Lux.  The 

battery used is the VL-2330, a Vanadium Pentoxide Lithium 

coin battery, with 23mm in diameter, a rated voltage of 3.0V 

and 50mAh of nominal capacity. The battery can last about 50 

days with a current consumption of 50µA. The board provides 

an USB connector from which the battery can be recharged 

and the device to be configured for the first usage. As the USB 

power is connected to the same input as the solar panel, a load 

switch deactivates automatically the MPPT of the power 

management unit when the USB is connected. The Fig. 2 

shows the bloc diagram of the device. 

 

 
Fig. 2. Bloc diagram of the device. 

III. SOFTWARE AND ENERGY CONSUMPTION OPTIMIZATION 

The sensor is running Contiki-OS v3.0 [1], a free and 

open-source operating system for the Internet-Of-Things. The 

core of Contiki provides the IP communication through a 

complete network protocol stack. The rest of the system is 

implemented as application libraries that are optionally linked 

with the program. The network protocol stack we’re using in 

our project is illustrated in Fig. 3. 

 

 
Fig. 3. Network protocol stack covering all traditional OSI layers. 

The first main objective in our project was to enable the 

sleepy device behavior for the node which joins the network 

as simple host. To achieve the best energy performance for the 

host behavior, some changes had to be made on the network 

protocol stack. The first one is the implementation of the 

Optimized Neighbor Discovery Protocol (RFC6775) [2] which 

introduces the concept of sleeping devices for IP 

communications. In [3] the protocol is evaluated in Cooja 

simulator against its counterpart Neighbor Discovery Protocol 

(NDP) in term of RS/RA messages exchange. It has been 

conclude that the protocol reduces the number of RS/RA 

exchange ratio messages in the network by 80%. We show in 

this document the benefit in term of energy consumption when 

using this optimized protocol by considering both RS/RA and 

NS/NA messages exchange. We’ve furthermore enabled the 

mesh networking by activating the RPL protocol [4] within 

Contiki and made some adjustments to the implementation to 

work together with the optimized NDP.  

 

Finally, to take full advantage of the Optimized NDP, 

we’ve implemented a smart RDC mechanism which 

deactivates the permanent idle listening (ContikiMAC) for the 

host when not required. Many researches have been carried 

out to improve the energy waste of the idle listening by 

implementing efficient MAC protocol but these researches are 

mainly focusing on the routing problem for the router behavior 

[5–7]. We don’t address this problem in this document and 

keep the RDC activated all the time for the router which 

therefore requires to be powered by an USB cable. For the 

host the optimization of the idle listening is straightforward 

because it doesn’t take part in the routing and every 

communication is initiated by itself. 

 

A. The Low Power Listening and the Smart RDC 

The Low Power Listening (LPL) is a common technique 

in Wireless Sensor Network for reducing energy consumption 

where nodes periodically wakes-up from the low power mode 

to sample the wireless channel and detect radio activity with 

the Clear Channel Assessment (CCA) mechanism. The actual 

implementation of the LPL mechanism in Contiki turns on the 

RDC when the device boots and it is never turned off. When 

activated all the time, this periodic wake-up of the radio is a 

waste of energy especially for nodes which doesn’t take part 
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in the routing within a mesh network. Furthermore, with the 

implementation of the optimized NDP which introduces the 

concept of sleeping device the deactivation of the LPL is more 

justified. The average current consumption when the LPL is 

activated and when the device is in deep sleep was measured 

and reported in Fig. 4. The theoretical excepted lifetime of the 

device while the LPL is activated is 1.3 years with 2xAA 

batteries and only 5 days with our battery of 50mAh. 

 

 
Fig. 4. When activated the LPL consumes 428µA on average whereas in deep 

sleep mode the average current is only 4µA. 

The code source of Contiki-OS was slightly modified to 

support the deactivation of the ContikiMAC RDC. For a 

sleeping device, the LPL is required only when the node is 

expecting a response from a request. TABLE 1 lists the type 

of messages that expect a response with the current protocol 

stack.  Every time the node is making a request of the type 

listed in TABLE 1, the LPL is activated for 3 seconds. If no 

response is received during these 3 seconds the LPL is 

prolonged for 1 second until the response is received or the 

number of maximum attempt is reached. 

 
TABLE 1 

TYPE OF MESSAGE WITH THE EXPECTED RESPONSE 

Protocol Message  Expected response 

NDP RS RA 

NDP NS NA 

RPL DIS DIO 

RPL DAO DAO ACK 

CoAP CON ACK 

CoAP 2.05 Content (M=1) GET 

B. The optimized NDP 

The optimized ND process [2] provides support for 

sleeping host by making the interaction between the host and 

router a host initiated interactions and thus avoids multicast 

flooding of message and improves the interaction between 

sleeping host and routers. The IPv6 neighbor discovery in its 

basic form specified in RFC 4861 [8] was not designed for 

asymmetric reachability between the nodes in the network: a 

sleeping node is by definition not reachable at any time which 

makes the protocol inefficient.  

The basic concept of the optimized NDP is that a host 

(6LN) registers itself to a router (6LR) for a certain duration 

during which the host can go to sleep. During this registration 

period the host doesn’t perform Neighbor Unreachability 

Detection (NUD) to actively keep track of neighbor’s changes. 

With the optimized NDP, a host speaks only to a router and 

uses the registration mechanism to keep the connection with 

this later. A device configured as a router registers itself 

equally as the host does and update its registration to its parent 

router too. 

The optimized NDP exchanges the same type of messages 

as its counterpart NDP but with two new options in the 

messages: the Authoritative Border Router Option (ABRO) 

and the Address Registration Option (ARO). When joining the 

network, the host or the router first sends a multicast Router 

Solicitation (RS) in order to find a parent router. A nearby 

router responds with a unicast Router Advertisement (RA) 

containing among others the new ABRO option. This new 

option contains the information relatives to the border-router 

which are its IP address, the version and its lifetime. Then the 

node send a Neighbor Solicitation (NS) containing the ARO 

option with the registration lifetime during which it’ll be 

registered to the router. The router responds to the node with a 

Neighbor Advertisement (NA) containing the result of the 

registration. Note that there is two other messages not 

mentioned here which are introduced in the optimized NDP. 

The Duplicate Address Detection (DAD) and Duplicate 

Address Confirmation (DAC) messages. Both of these 

messages are used by the router to verify with the border-

router, before accepting a registration, that the address trying 

to register is not already used by another node in the network. 

These messages are omitted here since we are using EUI-64 

addresses which are supposed to be unique.   

Once the registration is a success, the node send 

periodically a new registration with an NS just before the 

registration expires and an RS when the router, prefix or 

border-router lifetime is about to expires if not updated 

meanwhile. 

 

1) Energy evaluation of the standard NDP  

In this section we evaluate the energy spent by the 

protocol while exchanging the periodic messages. We measure 

the current consumed by the device during this process and 

extrapolate the data to compute the total charge consumed 

during a full day of activity.  

In the standard NDP a router send unsolicited multicast 

RA message periodically or when solicited by a RS message. 

With ContikiMAC, a multicast message is repeated during the 

whole RDC period so that every node receives the message. 

The periodicity of the RA message is not fixed by the protocol 

but can vary from 3 to 1800 seconds with a default value of 

600 seconds in Contiki-OS. The exchange of the NS/NA 

messages is equally “periodic” assuming that there is a 

periodic communication between the nodes. In fact, a 

neighbor’s interface is REACHABLE for a specific duration 

after which the interface goes in the STALE state. When a 

node communicates to another node with the interface in the 

STALE state, the Neighbor Unreachability Detection (NUD) 

algorithm is started to verify the reachability of this interface 

by exchanging NS/NA message.  The reachable time of an 

interface varies from 5 to 15 minutes and it is determined 

when the interface is enabled. The number of exchange must 

be multiplied by the number of interface.  

Fig. 5 and Fig. 6 show the current consumption of the 

device while sending multicast RS/RA message and 

performing NUD with NS/NA message respectively. 
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Fig. 5. Current consumption during a multicast RA or RS message. The 
message is repeated by ContikiMAC during the full period of the RDC which 

is here 125ms. 

 
Fig. 6. Current consumption during NS/NA message exchange for an 

interface. 

Using the current consumption measured in Fig. 5 and 

Fig. 6 we compute the total charge consumed by the exchange 

of the periodic ND messages for different intervals over a 

period of 24 hours. The number of occurrences for the NS/NA 

messages is doubled because there is a minimum of 2 

interfaces configured in the device for the local and global 

address. Running on a battery with a capacity of 50mAh, the 

energy spent due to the NUD in the worst case is 0.23% per 

day of the total charge for the host and 0.48% per day for a 

router. 
TABLE 2 

WASTE OF ENERGY OVER 24 HOURS ON A BATTERY OF 50MAH FOR PERIODIC 

MESSAGES EXCHANGE IN THE STANDARD NDP. 

 
Interval 

(in min.) 
Nb. Occ. 

Total 

charge 

Waste of 

energy  

NS/NA  

(2 interfaces) 

15 192 138mC 0.077% 

10 288 207mC 0.115% 

5 576 415mC 0.23% 

RA  
30 48 150mC 0.083% 

10 144 450mC 0.25% 

RS 60 24 9mC 0.005% 

 

2) Energy evaluation of the optimized NDP 

With the optimized neighbor discovery protocol there is 

no more periodic unsolicited multicast RA message neither 

periodic NUD with NS/NA message exchange between the 

interfaces. The current consumption is consequently reduced. 

The router and the host behaves similarly because both 

registers them self to a parent router and periodically update 

the registration before expiration. The unit of the ARO option 

is in minute, therefore the minimum registration lifetime is 1 

minute in the worst case. There is no limit for the maximum 

value expects the size of the field which is 16-bits.  

The comparison between the two protocols is not 

straightforward because the different lifetimes can vary from 

implementation to implementation but using the values from 

TABLE 2 and TABLE 3, in the best case, the host spends 15x 

less energy per day with the optimized NDP considering only 

the NS/NA messages exchange. 

 
TABLE 3 

WASTE OF ENERGY OVER 24 HOURS ON A BATTERY OF 50MAH FOR PERIODIC 

MESSAGES EXCHANGE IN THE OPTIMIZED NDP. 

 

Reg. 

lifetime 

(in min.) 

Nb. Occ. 
Total 

charge 

Waste of 

energy 

NS/NA  

60 24 9mC 0.005% 

15 96 36mC 0.02% 

1 1440 534mC 0.3% 

RS 60 24 9mC 0.005% 

IV. DEVICE MANAGEMENT 

To manage the sensors, on top of CoAP [9], we use the 

Open Mobile Alliance (OMA) Lightweight Machine To 

Machine (LwM2M) protocol [10]. CoAP provides a 

request/response interaction between application endpoints 

and includes key concepts of the Web such as URIs and 

Internet media types but doesn’t ensure interoperability on the 

application layer. OMA LwM2M was designed for this 

purpose and respond to the demand of a common standard for 

managing low power devices in constrained networks. 

We’re using the available implementation of the OMA 

LwM2M standard within Contiki 3.0 and add our own Objects 

and Resources for our device. The implementation provides a 

basic registration mechanism to the server. We complete the 

registration process with the server and implement the 

Registration Update mechanism which is the key feature to 

communicate with our sleepy node since we deactivate the 

LPL. Our sleepy node leverage completely the Registration 

Update mechanism of the LwM2M protocol by allowing an 

asynchronous communication with this later without adding 

more complexity to the system by implementing a proxy or 

any other non-standardized mechanism. 

 

1) Web Interface 

The open source applications for the server side are still 

not widely available because the standard is relatively recently 

published. Leshan [11] is a popular LwM2M server 

implemented in Java which is based on the Californium 

project for the CoAP implementation. Wakaama [12] and 

AwaLwM2M [13] are both implemented in C and provide API 

to build a server without the need of an intimate knowledge of 

the M2M protocol. Wakaama is based on the Erbium CoAP 

library as Contiki but the library was modified to run on 

Linux. AwaLwM2M is using the libcoap library.  

To manage a bunch of devices one need a GUI and 

Leshan is the only one that actually provides a Web interface 

to interact with LwM2M Clients. To responds to the needs of 

our project, we’ve developed our own web interface with 

NodeJS and use the lwm2m-node-lib [14] module for the 

LwM2M server. The module implements the Client 
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Registration, the Device Management & Service Enablement 

and the Information Reporting interfaces.  

We’ve modified the core functionality of the module by 

adding the possibility to queue the operations in destination to 

a sleepy device and thus complete the Registration Update 

mechanism on the server side. All messages in destination to 

the sleepy device will be delivered when this later wakes-up 

and updates its registration to the server.  

To save even more energy of the sleepy device, the web 

application keep in a database the resource associated to a 

device based on its endpoint name. Then the next time a 

similar device register to the server, the application is aware of 

the resource available on the device and thus there is no need 

to discover the resources again.  

From within the web interface, the user is able to discover 

the resource available on the device, read/write resource and 

set an observation for any observable resource.  

 

 
Fig. 7. The LwM2M Web Application allows controlling the device and to 

setup the observation for the resources. 

V. POWER CONSUMPTION ANALYSIS 

The power consumption of the device is determined by 

analyzing the current consumption of the periodic tasks 

running while performing measures via the Information 

Reporting of LwM2M protocol. The total charge Q and the 

average current during each task are reported in TABLE 4.  

 
TABLE 4 

TOTAL CHARGE C CONSUMED BY EACH POSSIBLE  
PERIODIC EVENT WITHIN THE DEVICE. 

Periodic event Charge Q Duration Iavg 

Temperature measure 324 µC 126 ms 2.57 mA 

Humidity measure 296 µC 80 ms 3.70 mA 

Illuminance measure 384 µC 440 ms 0.87 mA 

Pressure measure 340 µC 135 ms 2.52 mA 

Battery voltage 

measure 
359 µC 282 ms 1.27 mA 

Solar voltage 

measure 
359 µC 282 ms 1.27 mA 

Solar current measure 266 µC 31 ms 8.6 mA 

Presence detection 240 µC 100 ms 2.4 mA 

Energest reporting 290 µC 170 ms 1.71 mA 

ARO Registration 371 µC 170 ms 2.18 mA 

LwM2M Registration 

Update 
5 mC 10 s 0.5 mA 

The charge consumed is almost identical for every sensor 

measurement and approximate 300µA in average. Each task 

consists mainly to wake-up the processor, process the event, 

power on the sensor, start the measure (during which the 

processor goes in deep sleep mode) and finally send the data 

over the radio. The LwM2M Registration Update consumes 

the most because the LPL is activated for 10 seconds. The 

duration of the LPL activation was chosen actually sufficiently 

high so that all configuration parameters from the server are 

received at once on the client and equally to give sufficient 

time for the farthest device from the sink to receive every 

message. This parameter can be optimized to reduce even 

more the current consumption. 

To determine the lifetime of the device we compute the 

average current consumption of the device while performing 

sensors measurement at different intervals. The same period of 

measurement was set for each sensor and assuming a presence 

detection at the same interval. The average current 

consumption Iavg is reported in Fig. 8. With an interval of 5 

minutes, the average current consumption is 32µA while 

performing a Registration Update every 5 minutes. The device 

can last on a battery of 50mAh (using 80% of the capacity) 

theoretically about 54 days (1300 hours). 

 

 
Fig. 8. Average current consumption of the device while performing sensor 

measurement at different period (same for all sensors) with a fixed ARO 
Registration period of 1 hour and LwM2M Reg. Update at 60, 300 and 1800 

seconds. 

A. Battery recharge performance 

To determine the performance of the battery recharge and 

thus the sustainability of the device, we logged the data from 

several devices over a period of approximately 2 months while 

these latter are placed at different locations in the room and 

exposed to different light condition. Thanks to the illuminance 

sensor and the power measurement chip mounted on the board 

we’re able to establish a relation between the incoming power 

from the solar panel, the light condition and the recharge of 

the battery. In Fig. 9 we plotted the power generated by the 

solar panel against the light intensity. We measured the power 

coming from the solar panel: when this later is connected in 

series with a schottky diode (W/ diode) which was used to 

prevent the current from the USB cable going in the solar 

panel when this latter is plugged in, when the schottky diode 

was removed (W/h diode) and finally when the solar panel 

was doubled and connected in parallel (2 panels).  
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Fig. 9.Power generated by the solar panels at different light intensity.  

We first notice in Fig. 9 that the schottky diode reduces 

by a factor of 50% the performance of the solar panel. While 

the measured voltage is approximately the same when the 

diode is present or not, the current on the other hand is 

reduced by half when the diode is connected. This is likely 

due to the functioning of the boost converter and the MPPT 

mechanism which cannot perform well with the diode. The 

double panel configuration however doesn’t double the 

incoming power. This latter provide only x1.5 more power. 

More tests and measurement are required to validate these 

finding. Finally the plot shows the repartition of the 

instantaneous power generated by the solar panels and the 

light intensity which sit in the range of 10 to 300µW and 0 to 

500 lux respectively most of the time. 

In Fig. 10 is shown the voltage of the battery against the 

solar power measured at the same time. The plot thus denotes 

the performance of the solar panel to elevate the voltage of the 

battery at a specific level. The elliptic curve extracted from the 

data shows that the battery voltage will never decrease below 

2.8V with an incoming power of at least 400µW. Knowing 

that the steady state of the battery is around 2.7V before this 

latter begins the downward curve, the ideal constant power 

from the solar panel to guarantee the self-sustainability of the 

device is between 200µW to 400µW.  This is furthermore 

confirmed by considering the equation below with 

approximately 100µW for 𝑃𝑠𝑦𝑠𝑡𝑒𝑚, 60% to 80% for the 

efficiency of the power management unit (𝜂𝑃𝑀𝑈) and 200µW 

for 𝑃𝑠𝑜𝑙𝑎𝑟 . 

 

𝑃𝑠𝑜𝑙𝑎𝑟 ∙ 𝜂𝑃𝑀𝑈 > 𝑃𝑠𝑦𝑠𝑡𝑒𝑚 

 

 
Fig. 10. Performance to elevate the battery voltage with the incoming solar 

panel power.  

 
Fig. 11. Measurement of the overall performance to retain the stored energy.  

Finally we calculated the performance of the battery to 

retain the stored energy of a recharge. To do that we 

calculated how long it takes for the battery to reach the level it 

has at the beginning of the recharge. The results in Fig. 11 

show that for 1 Joule of energy stored, the battery takes 

approximately 1 hour to reach its initial voltage. The datalog 

was realized with devices running with a power consumption 

of about 60µW in average. The plot shows a linear 

relationship between the duration of the voltage decrease and 

the amount of stored energy but not at the expected slope. The 

results are compared with theoretical and “supposed” 

durations of battery decrease for an average consumption of 

60µW and for different conversion efficiency (dashed lines). 

We can clearly notice that the measured durations are close to 

a conversion efficiency of only 22%. Despite the fact that a 

coulomb counter IC was not used in our experiment to 

quantify precisely the amount of stored energy in the battery, 

the results shows nevertheless that in addition to the 

performance of the boost converter which is around 60 to 

80%, the battery chemistry has a significant impact on the 

energy storage performance due principally the aging effect, 

the periodic peak current drawn during radio transmission and 

the round-trip efficiency of the battery which is never 100%.  

 

VI. CONCLUSIONS 

This work has shown the development of a self-sustained 

IPv6 multi-sensor device running on a small rechargeable 

battery and harvesting solar energy. The deactivation of the 

LPL mechanism and the implementation of the optimized 

version of the ND protocol reduce the standby current and the 

amount of protocol messages exchange respectively allowing 

a sleepy node to last longer on a small rechargeable battery. 

The device consumes only 5µA in deep sleep mode and has an 

average power consumption of approximately 100µW while 

performing sensors measurement and reporting at 5 minutes 

interval. 

The management of the nodes is handled through the 

OMA LwM2M protocol and a web application has been 

developed for an automatic configuration of the nodes when 

these later are registering in the network. The downward 

communication with the sleepy node is accomplished by the 

Registration Update mechanism of the LwM2M protocol.  The 

power consumption of the node can further be reduced 

through optimization of the sensors reporting interval, 

frequency and duration of the wake-up period and other 

parameters which are easily configurable through the web 

interface.  
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The results showed finally that a very small solar panel of 

600mm
2
 can sustain an average power consumption of 100µW 

at reasonably low ambient light (1000 lux). But for a 

prolonged operation at very low light intensity (<500 lux), due 

to the overall low efficiency of the system to store the solar 

energy, the results suggest that although a rechargeable battery 

provides larger capacity and allow a solar powered WSN 

device to last longer in the dark in comparison to a super-

capacitor, a combination of both storage elements would be 

ideal and the super-capacitor would cover all the 

disadvantages of the rechargeable battery while operating at 

very low light intensity.   
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