

1

Abstract— This paper presents the implementation of a self-

sustained IPv6 device embedding multiple sensors. The research

focuses mainly on the implementation of a sleepy node using the

recent Internet protocols for Wireless Sensor Networks (WSN).

Based on the popular Contiki operating system, the protocol

stack has been enhanced by implementing the optimized version

of the Neighbor Discovery Protocol (RFC6755). The usage of the

Low Power Listening (LPL) of the RDC layer has been reduced

improving notably the current consumption of the device. The

device is equipped with a rechargeable battery and a small solar

panel allowing to harvest ambient light while performing

measure of the sensors. The results have shown that the

optimized version of the ND protocol can saves up to 15 times

more energy per day than the standard NDP. The devices

communicate at the application layer over the OMA LwM2M

protocol and a web application has been implemented for the

interaction with the nodes. The device consumes 15µW in power

down mode and about 100µW while performing sensors

measurement at a reasonability short interval. The device can

last about 50 days in the dark on a battery of 50mAh and a light

condition of 1000 lux in average is require to sustain the mean

power consumption of the device while reporting sensors

measurement.

Index Terms— Contiki, Internet of Things (IoT), IPv6, NDP,

LwM2M, WSN

I. INTRODUCTION

ireless Sensor Network (WSN) is an emerging

domain and IPv6 is one of the core technologies to

form the future networks. WSN are composed of a

large number of sensor nodes that are generally powered by

batteries that must be purchased, maintained and replaced.

Energy harvesting presents a straightforward solution for

easily powering these remotes device by using clean energy.

Many different types of energy harvesting technologies exist,

such as solar, vibration, wind, piezoelectric, thermoelectric

and so on. The most popular source of environmental energy

is the sun. One reason why solar energy is becoming more

widely used is that it has a higher power density (about

15mW/cm
3
) than other renewable energy source, which

enables wireless sensors nodes to be completely self-

sustained. Connecting a solar powered IPv6 device to the

Internet is a challenging task and not feasible unless a storage

element is available allowing the device to run during the

night. Although ceramic capacitors have an infinite lifetime

and are simpler to recharge, the energy density of these

storage elements (1 to 10 J/cm
3
) is too small compared to

rechargeable batteries (1000 J/cm
3
) and thus not feasible to

use in our application where the device must be able to run

during several days in the dark. Although the shelf lifetime of

secondary batteries is degrading over time due to the recharge

cycles, they are still more suitable nowadays compared to

primary batteries in term of environmental impact, especially

considering that there will always be more of connected

devices in the future.

The purpose of this research was to implement an IPv6

network of self-sustained devices and routers incorporating

several sensors and by lowering the current consumption as

much as possible to improve the lifetime of the device. Since

most of the energy spent by a WSN device is during radio

transmission, it was of our main concern to reduce the radio

activities in all layers of the network protocol stack. Our

research focus mainly on the implementation of the sleepy

devices which by definition doesn’t take part in the routing

protocol of the network and therefore can sleep most of the

time to save its battery.

The remainder of the paper is organized as follows. In the

following section we present the hardware of our IPv6 device.

In Section III we present the software with the network

protocol stack and compare the energy performance of the

standard and optimized version of the NDP protocol. In

section IV we show our Web Application for the device

management. We evaluate the overall power consumption of

the device in Section V. Finally our conclusion is explained in

Section VI.

II. IPV6 PLATFORM

Our self-sustained IPv6 device prototype is shown in Fig.

1. The processor running on the platform is the CC2538 from

Texas Instrument which is an ARM Cortex-M3 cadenced at

16MHz. The platform integrates the following sensors:

temperature, humidity, pressure, light, a motion detector and a

voltage/current measurement unit. The power of each sensor is

controlled individually by the microprocessor reducing the

power consumption of the system while in deep sleep mode.

An I
2
C switch separates the connection of each I

2
C interface

from the sensors chips and thus prevents these latter to be

power-on from the bus. The gain of current consumption in

deep sleep thanks to the I
2
C switch is in order of 25µA

allowing the board to consume only 4.9µA when in deep sleep

mode and 6.4µA with the motion detector enabled.

Implementation of a self-sustained multi-sensors

IPv6 sleepy device for the Internet of Things

Darko Petrovic, Member, IEEE

W

2

Fig. 1. Proposed platform.

The solar panel SLMD121H04L is made of 4 single cells

of monocrystalline in series with a general size of 43x14mm

and provides an efficiency of 22%. This solar panel was

chosen because it can provides 40µW of power in low light

condition (100 lux) which is sufficient to sustain the power

consumption of the device while in deep sleep and 400µW at

1000 lux to sustain the average power consumption of the

system while performing measures. Since the output power is

linearly proportional to the amount of light, we calculated the

slope of the curve to be approximately 0.4µW/Lux. The

battery used is the VL-2330, a Vanadium Pentoxide Lithium

coin battery, with 23mm in diameter, a rated voltage of 3.0V

and 50mAh of nominal capacity. The battery can last about 50

days with a current consumption of 50µA. The board provides

an USB connector from which the battery can be recharged

and the device to be configured for the first usage. As the USB

power is connected to the same input as the solar panel, a load

switch deactivates automatically the MPPT of the power

management unit when the USB is connected. The Fig. 2

shows the bloc diagram of the device.

Fig. 2. Bloc diagram of the device.

III. SOFTWARE AND ENERGY CONSUMPTION OPTIMIZATION

The sensor is running Contiki-OS v3.0 [1], a free and

open-source operating system for the Internet-Of-Things. The

core of Contiki provides the IP communication through a

complete network protocol stack. The rest of the system is

implemented as application libraries that are optionally linked

with the program. The network protocol stack we’re using in

our project is illustrated in Fig. 3.

Fig. 3. Network protocol stack covering all traditional OSI layers.

The first main objective in our project was to enable the

sleepy device behavior for the node which joins the network

as simple host. To achieve the best energy performance for the

host behavior, some changes had to be made on the network

protocol stack. The first one is the implementation of the

Optimized Neighbor Discovery Protocol (RFC6775) [2] which

introduces the concept of sleeping devices for IP

communications. In [3] the protocol is evaluated in Cooja

simulator against its counterpart Neighbor Discovery Protocol

(NDP) in term of RS/RA messages exchange. It has been

conclude that the protocol reduces the number of RS/RA

exchange ratio messages in the network by 80%. We show in

this document the benefit in term of energy consumption when

using this optimized protocol by considering both RS/RA and

NS/NA messages exchange. We’ve furthermore enabled the

mesh networking by activating the RPL protocol [4] within

Contiki and made some adjustments to the implementation to

work together with the optimized NDP.

Finally, to take full advantage of the Optimized NDP,

we’ve implemented a smart RDC mechanism which

deactivates the permanent idle listening (ContikiMAC) for the

host when not required. Many researches have been carried

out to improve the energy waste of the idle listening by

implementing efficient MAC protocol but these researches are

mainly focusing on the routing problem for the router behavior

[5–7]. We don’t address this problem in this document and

keep the RDC activated all the time for the router which

therefore requires to be powered by an USB cable. For the

host the optimization of the idle listening is straightforward

because it doesn’t take part in the routing and every

communication is initiated by itself.

A. The Low Power Listening and the Smart RDC

The Low Power Listening (LPL) is a common technique

in Wireless Sensor Network for reducing energy consumption

where nodes periodically wakes-up from the low power mode

to sample the wireless channel and detect radio activity with

the Clear Channel Assessment (CCA) mechanism. The actual

implementation of the LPL mechanism in Contiki turns on the

RDC when the device boots and it is never turned off. When

activated all the time, this periodic wake-up of the radio is a

waste of energy especially for nodes which doesn’t take part

3

in the routing within a mesh network. Furthermore, with the

implementation of the optimized NDP which introduces the

concept of sleeping device the deactivation of the LPL is more

justified. The average current consumption when the LPL is

activated and when the device is in deep sleep was measured

and reported in Fig. 4. The theoretical excepted lifetime of the

device while the LPL is activated is 1.3 years with 2xAA

batteries and only 5 days with our battery of 50mAh.

Fig. 4. When activated the LPL consumes 428µA on average whereas in deep

sleep mode the average current is only 4µA.

The code source of Contiki-OS was slightly modified to

support the deactivation of the ContikiMAC RDC. For a

sleeping device, the LPL is required only when the node is

expecting a response from a request. TABLE 1 lists the type

of messages that expect a response with the current protocol

stack. Every time the node is making a request of the type

listed in TABLE 1, the LPL is activated for 3 seconds. If no

response is received during these 3 seconds the LPL is

prolonged for 1 second until the response is received or the

number of maximum attempt is reached.

TABLE 1

TYPE OF MESSAGE WITH THE EXPECTED RESPONSE

Protocol Message Expected response

NDP RS RA

NDP NS NA

RPL DIS DIO

RPL DAO DAO ACK

CoAP CON ACK

CoAP 2.05 Content (M=1) GET

B. The optimized NDP

The optimized ND process [2] provides support for

sleeping host by making the interaction between the host and

router a host initiated interactions and thus avoids multicast

flooding of message and improves the interaction between

sleeping host and routers. The IPv6 neighbor discovery in its

basic form specified in RFC 4861 [8] was not designed for

asymmetric reachability between the nodes in the network: a

sleeping node is by definition not reachable at any time which

makes the protocol inefficient.

The basic concept of the optimized NDP is that a host

(6LN) registers itself to a router (6LR) for a certain duration

during which the host can go to sleep. During this registration

period the host doesn’t perform Neighbor Unreachability

Detection (NUD) to actively keep track of neighbor’s changes.

With the optimized NDP, a host speaks only to a router and

uses the registration mechanism to keep the connection with

this later. A device configured as a router registers itself

equally as the host does and update its registration to its parent

router too.

The optimized NDP exchanges the same type of messages

as its counterpart NDP but with two new options in the

messages: the Authoritative Border Router Option (ABRO)

and the Address Registration Option (ARO). When joining the

network, the host or the router first sends a multicast Router

Solicitation (RS) in order to find a parent router. A nearby

router responds with a unicast Router Advertisement (RA)

containing among others the new ABRO option. This new

option contains the information relatives to the border-router

which are its IP address, the version and its lifetime. Then the

node send a Neighbor Solicitation (NS) containing the ARO

option with the registration lifetime during which it’ll be

registered to the router. The router responds to the node with a

Neighbor Advertisement (NA) containing the result of the

registration. Note that there is two other messages not

mentioned here which are introduced in the optimized NDP.

The Duplicate Address Detection (DAD) and Duplicate

Address Confirmation (DAC) messages. Both of these

messages are used by the router to verify with the border-

router, before accepting a registration, that the address trying

to register is not already used by another node in the network.

These messages are omitted here since we are using EUI-64

addresses which are supposed to be unique.

Once the registration is a success, the node send

periodically a new registration with an NS just before the

registration expires and an RS when the router, prefix or

border-router lifetime is about to expires if not updated

meanwhile.

1) Energy evaluation of the standard NDP

In this section we evaluate the energy spent by the

protocol while exchanging the periodic messages. We measure

the current consumed by the device during this process and

extrapolate the data to compute the total charge consumed

during a full day of activity.

In the standard NDP a router send unsolicited multicast

RA message periodically or when solicited by a RS message.

With ContikiMAC, a multicast message is repeated during the

whole RDC period so that every node receives the message.

The periodicity of the RA message is not fixed by the protocol

but can vary from 3 to 1800 seconds with a default value of

600 seconds in Contiki-OS. The exchange of the NS/NA

messages is equally “periodic” assuming that there is a

periodic communication between the nodes. In fact, a

neighbor’s interface is REACHABLE for a specific duration

after which the interface goes in the STALE state. When a

node communicates to another node with the interface in the

STALE state, the Neighbor Unreachability Detection (NUD)

algorithm is started to verify the reachability of this interface

by exchanging NS/NA message. The reachable time of an

interface varies from 5 to 15 minutes and it is determined

when the interface is enabled. The number of exchange must

be multiplied by the number of interface.

Fig. 5 and Fig. 6 show the current consumption of the

device while sending multicast RS/RA message and

performing NUD with NS/NA message respectively.

4

Fig. 5. Current consumption during a multicast RA or RS message. The
message is repeated by ContikiMAC during the full period of the RDC which

is here 125ms.

Fig. 6. Current consumption during NS/NA message exchange for an

interface.

Using the current consumption measured in Fig. 5 and

Fig. 6 we compute the total charge consumed by the exchange

of the periodic ND messages for different intervals over a

period of 24 hours. The number of occurrences for the NS/NA

messages is doubled because there is a minimum of 2

interfaces configured in the device for the local and global

address. Running on a battery with a capacity of 50mAh, the

energy spent due to the NUD in the worst case is 0.23% per

day of the total charge for the host and 0.48% per day for a

router.
TABLE 2

WASTE OF ENERGY OVER 24 HOURS ON A BATTERY OF 50MAH FOR PERIODIC

MESSAGES EXCHANGE IN THE STANDARD NDP.

Interval

(in min.)
Nb. Occ.

Total

charge

Waste of

energy

NS/NA

(2 interfaces)

15 192 138mC 0.077%

10 288 207mC 0.115%

5 576 415mC 0.23%

RA
30 48 150mC 0.083%

10 144 450mC 0.25%

RS 60 24 9mC 0.005%

2) Energy evaluation of the optimized NDP

With the optimized neighbor discovery protocol there is

no more periodic unsolicited multicast RA message neither

periodic NUD with NS/NA message exchange between the

interfaces. The current consumption is consequently reduced.

The router and the host behaves similarly because both

registers them self to a parent router and periodically update

the registration before expiration. The unit of the ARO option

is in minute, therefore the minimum registration lifetime is 1

minute in the worst case. There is no limit for the maximum

value expects the size of the field which is 16-bits.

The comparison between the two protocols is not

straightforward because the different lifetimes can vary from

implementation to implementation but using the values from

TABLE 2 and TABLE 3, in the best case, the host spends 15x

less energy per day with the optimized NDP considering only

the NS/NA messages exchange.

TABLE 3

WASTE OF ENERGY OVER 24 HOURS ON A BATTERY OF 50MAH FOR PERIODIC

MESSAGES EXCHANGE IN THE OPTIMIZED NDP.

Reg.

lifetime

(in min.)

Nb. Occ.
Total

charge

Waste of

energy

NS/NA

60 24 9mC 0.005%

15 96 36mC 0.02%

1 1440 534mC 0.3%

RS 60 24 9mC 0.005%

IV. DEVICE MANAGEMENT

To manage the sensors, on top of CoAP [9], we use the

Open Mobile Alliance (OMA) Lightweight Machine To

Machine (LwM2M) protocol [10]. CoAP provides a

request/response interaction between application endpoints

and includes key concepts of the Web such as URIs and

Internet media types but doesn’t ensure interoperability on the

application layer. OMA LwM2M was designed for this

purpose and respond to the demand of a common standard for

managing low power devices in constrained networks.

We’re using the available implementation of the OMA

LwM2M standard within Contiki 3.0 and add our own Objects

and Resources for our device. The implementation provides a

basic registration mechanism to the server. We complete the

registration process with the server and implement the

Registration Update mechanism which is the key feature to

communicate with our sleepy node since we deactivate the

LPL. Our sleepy node leverage completely the Registration

Update mechanism of the LwM2M protocol by allowing an

asynchronous communication with this later without adding

more complexity to the system by implementing a proxy or

any other non-standardized mechanism.

1) Web Interface

The open source applications for the server side are still

not widely available because the standard is relatively recently

published. Leshan [11] is a popular LwM2M server

implemented in Java which is based on the Californium

project for the CoAP implementation. Wakaama [12] and

AwaLwM2M [13] are both implemented in C and provide API

to build a server without the need of an intimate knowledge of

the M2M protocol. Wakaama is based on the Erbium CoAP

library as Contiki but the library was modified to run on

Linux. AwaLwM2M is using the libcoap library.

To manage a bunch of devices one need a GUI and

Leshan is the only one that actually provides a Web interface

to interact with LwM2M Clients. To responds to the needs of

our project, we’ve developed our own web interface with

NodeJS and use the lwm2m-node-lib [14] module for the

LwM2M server. The module implements the Client

5

Registration, the Device Management & Service Enablement

and the Information Reporting interfaces.

We’ve modified the core functionality of the module by

adding the possibility to queue the operations in destination to

a sleepy device and thus complete the Registration Update

mechanism on the server side. All messages in destination to

the sleepy device will be delivered when this later wakes-up

and updates its registration to the server.

To save even more energy of the sleepy device, the web

application keep in a database the resource associated to a

device based on its endpoint name. Then the next time a

similar device register to the server, the application is aware of

the resource available on the device and thus there is no need

to discover the resources again.

From within the web interface, the user is able to discover

the resource available on the device, read/write resource and

set an observation for any observable resource.

Fig. 7. The LwM2M Web Application allows controlling the device and to

setup the observation for the resources.

V. POWER CONSUMPTION ANALYSIS

The power consumption of the device is determined by

analyzing the current consumption of the periodic tasks

running while performing measures via the Information

Reporting of LwM2M protocol. The total charge Q and the

average current during each task are reported in TABLE 4.

TABLE 4

TOTAL CHARGE C CONSUMED BY EACH POSSIBLE
PERIODIC EVENT WITHIN THE DEVICE.

Periodic event Charge Q Duration Iavg

Temperature measure 324 µC 126 ms 2.57 mA

Humidity measure 296 µC 80 ms 3.70 mA

Illuminance measure 384 µC 440 ms 0.87 mA

Pressure measure 340 µC 135 ms 2.52 mA

Battery voltage

measure
359 µC 282 ms 1.27 mA

Solar voltage

measure
359 µC 282 ms 1.27 mA

Solar current measure 266 µC 31 ms 8.6 mA

Presence detection 240 µC 100 ms 2.4 mA

Energest reporting 290 µC 170 ms 1.71 mA

ARO Registration 371 µC 170 ms 2.18 mA

LwM2M Registration

Update
5 mC 10 s 0.5 mA

The charge consumed is almost identical for every sensor

measurement and approximate 300µA in average. Each task

consists mainly to wake-up the processor, process the event,

power on the sensor, start the measure (during which the

processor goes in deep sleep mode) and finally send the data

over the radio. The LwM2M Registration Update consumes

the most because the LPL is activated for 10 seconds. The

duration of the LPL activation was chosen actually sufficiently

high so that all configuration parameters from the server are

received at once on the client and equally to give sufficient

time for the farthest device from the sink to receive every

message. This parameter can be optimized to reduce even

more the current consumption.

To determine the lifetime of the device we compute the

average current consumption of the device while performing

sensors measurement at different intervals. The same period of

measurement was set for each sensor and assuming a presence

detection at the same interval. The average current

consumption Iavg is reported in Fig. 8. With an interval of 5

minutes, the average current consumption is 32µA while

performing a Registration Update every 5 minutes. The device

can last on a battery of 50mAh (using 80% of the capacity)

theoretically about 54 days (1300 hours).

Fig. 8. Average current consumption of the device while performing sensor

measurement at different period (same for all sensors) with a fixed ARO
Registration period of 1 hour and LwM2M Reg. Update at 60, 300 and 1800

seconds.

A. Battery recharge performance

To determine the performance of the battery recharge and

thus the sustainability of the device, we logged the data from

several devices over a period of approximately 2 months while

these latter are placed at different locations in the room and

exposed to different light condition. Thanks to the illuminance

sensor and the power measurement chip mounted on the board

we’re able to establish a relation between the incoming power

from the solar panel, the light condition and the recharge of

the battery. In Fig. 9 we plotted the power generated by the

solar panel against the light intensity. We measured the power

coming from the solar panel: when this later is connected in

series with a schottky diode (W/ diode) which was used to

prevent the current from the USB cable going in the solar

panel when this latter is plugged in, when the schottky diode

was removed (W/h diode) and finally when the solar panel

was doubled and connected in parallel (2 panels).

6

Fig. 9.Power generated by the solar panels at different light intensity.

We first notice in Fig. 9 that the schottky diode reduces

by a factor of 50% the performance of the solar panel. While

the measured voltage is approximately the same when the

diode is present or not, the current on the other hand is

reduced by half when the diode is connected. This is likely

due to the functioning of the boost converter and the MPPT

mechanism which cannot perform well with the diode. The

double panel configuration however doesn’t double the

incoming power. This latter provide only x1.5 more power.

More tests and measurement are required to validate these

finding. Finally the plot shows the repartition of the

instantaneous power generated by the solar panels and the

light intensity which sit in the range of 10 to 300µW and 0 to

500 lux respectively most of the time.

In Fig. 10 is shown the voltage of the battery against the

solar power measured at the same time. The plot thus denotes

the performance of the solar panel to elevate the voltage of the

battery at a specific level. The elliptic curve extracted from the

data shows that the battery voltage will never decrease below

2.8V with an incoming power of at least 400µW. Knowing

that the steady state of the battery is around 2.7V before this

latter begins the downward curve, the ideal constant power

from the solar panel to guarantee the self-sustainability of the

device is between 200µW to 400µW. This is furthermore

confirmed by considering the equation below with

approximately 100µW for 𝑃𝑠𝑦𝑠𝑡𝑒𝑚, 60% to 80% for the

efficiency of the power management unit (𝜂𝑃𝑀𝑈) and 200µW

for 𝑃𝑠𝑜𝑙𝑎𝑟 .

𝑃𝑠𝑜𝑙𝑎𝑟 ∙ 𝜂𝑃𝑀𝑈 > 𝑃𝑠𝑦𝑠𝑡𝑒𝑚

Fig. 10. Performance to elevate the battery voltage with the incoming solar

panel power.

Fig. 11. Measurement of the overall performance to retain the stored energy.

Finally we calculated the performance of the battery to

retain the stored energy of a recharge. To do that we

calculated how long it takes for the battery to reach the level it

has at the beginning of the recharge. The results in Fig. 11

show that for 1 Joule of energy stored, the battery takes

approximately 1 hour to reach its initial voltage. The datalog

was realized with devices running with a power consumption

of about 60µW in average. The plot shows a linear

relationship between the duration of the voltage decrease and

the amount of stored energy but not at the expected slope. The

results are compared with theoretical and “supposed”

durations of battery decrease for an average consumption of

60µW and for different conversion efficiency (dashed lines).

We can clearly notice that the measured durations are close to

a conversion efficiency of only 22%. Despite the fact that a

coulomb counter IC was not used in our experiment to

quantify precisely the amount of stored energy in the battery,

the results shows nevertheless that in addition to the

performance of the boost converter which is around 60 to

80%, the battery chemistry has a significant impact on the

energy storage performance due principally the aging effect,

the periodic peak current drawn during radio transmission and

the round-trip efficiency of the battery which is never 100%.

VI. CONCLUSIONS

This work has shown the development of a self-sustained

IPv6 multi-sensor device running on a small rechargeable

battery and harvesting solar energy. The deactivation of the

LPL mechanism and the implementation of the optimized

version of the ND protocol reduce the standby current and the

amount of protocol messages exchange respectively allowing

a sleepy node to last longer on a small rechargeable battery.

The device consumes only 5µA in deep sleep mode and has an

average power consumption of approximately 100µW while

performing sensors measurement and reporting at 5 minutes

interval.

The management of the nodes is handled through the

OMA LwM2M protocol and a web application has been

developed for an automatic configuration of the nodes when

these later are registering in the network. The downward

communication with the sleepy node is accomplished by the

Registration Update mechanism of the LwM2M protocol. The

power consumption of the node can further be reduced

through optimization of the sensors reporting interval,

frequency and duration of the wake-up period and other

parameters which are easily configurable through the web

interface.

7

The results showed finally that a very small solar panel of

600mm
2
 can sustain an average power consumption of 100µW

at reasonably low ambient light (1000 lux). But for a

prolonged operation at very low light intensity (<500 lux), due

to the overall low efficiency of the system to store the solar

energy, the results suggest that although a rechargeable battery

provides larger capacity and allow a solar powered WSN

device to last longer in the dark in comparison to a super-

capacitor, a combination of both storage elements would be

ideal and the super-capacitor would cover all the

disadvantages of the rechargeable battery while operating at

very low light intensity.

REFERENCES

[1] Contiki: The Open Source OS for the Internet of Things:

http://www.contiki-os.org.

[2] Neighbor Discovery Optimization for IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs), RFC6775.
[3] M. A. M. Seliem, K. M. F. Elsayed, and A. Khattab, “Performance

evaluation and optimization of neighbor discovery implementation

over Contiki OS,” in 2015 49th Annual Conference on Information
Sciences and Systems (CISS), 2015, pp. 119–123.

[4] RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks,

RFC6550, 2012.
[5] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC

protocol for wireless sensor networks,” in Proceedings.Twenty-First

Annual Joint Conference of the IEEE Computer and Communications
Societies, 2002, pp. 1567–1576.

[6] C.-J. Fu, A.-H. Lee, M.-H. Jin, and C.-Y. Kao, “A latency MAC

protocol for wireless sensor networks,” International Journal of Future
Generation Communication and Networking, vol. 2, no. 1, pp. 41–54,

2009.

[7] “An adaptive energy-efficient and low-latency MAC for data gathering
in wireless sensor networks,” in Parallel and Distributed Processing

Symposium, 2004. Proceedings. 18th International, 2004, p. 224.

[8] Neighbor Discovery for IP version 6 (IPv6), RFC4861, 2007.
[9] Constrained Application Protocol (CoAP), RFC7252, 2014.

[10] Lightweight M2M Specification v1.0, 2014.

[11] Leshan - OMA Lightweight M2M server and client in Java:
www.eclipse.org/leshan.

[12] Wakaama - OMA Lightweight M2M C implementation:

http://www.eclipse.org/wakaama.
[13] AwaLwM2M - Implementation of the OMA Lightweight M2M protocol

in C: https://github.com/ConnectivityFoundry/AwaLWM2M.

[14] Telefonica, lwm2m-node-lib: Library for building OMA Lightweight
M2M Applications.

	I. INTRODUCTION
	II. IPv6 Platform
	III. Software and energy consumption optimization
	A. The Low Power Listening and the Smart RDC
	B. The optimized NDP
	1) Energy evaluation of the standard NDP
	2) Energy evaluation of the optimized NDP

	IV. Device management
	1) Web Interface

	V. Power consumption analysis
	A. Battery recharge performance

	VI. Conclusions
	References

