Lexical elements Declarations

Reserved words Type declaration
Subtype declaration
Constant declaration
Signal declaration
Variable declaration

page 1 page 3

Type declaration

architecture a of e is

begin

end a;

package p is

end p;

in the STD.STANDARD package:

type
type
type
type
type

boolean is (false, true);

bit is ('0', '1');

character is (NUL, SOH, <...> '}', '~', DEL) ;
string is array(positive range <>) of character;
bit vector is array(natural range <>) of bit;

in the IEEE.STD_LOGIC_1164 package:
type std ulogic is ('U', 'X', '0', 'l', 'Z',
|W|, |L|, |H|, |_|)’.

type std ulogic_vector is
array (natural range <>) of std ulLogic;

in the IEEE.NUMERIC_STD package:

type
type

unsigned is array(natural range <>) of std Logic;
signed is array(natural range <>) of std logic;

page 4

abs
access
after
alias

all

and
architecture
array
assert
attribute
begin
block
body
buffer
bus

case
component

configuration

constant
disconnect
downto
else
elsif
end
entity
exit
file

for
function
generate
generic
group
guarded

Reserved words

if
impure
in
inertial
inout
is
label
library
linkage
literal
loop
map

mod
nand
new
next
nor

not
null

of

on
open

or
others
out
package
port
procedure
process
pure

page 2

range
record
register
reject
rem
report
return
rol

ror
select
severity
shared
signal
sla

sll

sra

srl
subtype
then

to
transport
type
unaffected
units
until
use
variable
wait
when
while
with
Xnor

XOor

Subtype declaration

Signal declaration

. . . BN
architecture a of e is package p is
begin
end p;

end a;
. _ BN
in the STD.STANDARD package:
subtype natural is integer range 0 to integer'high;
subtype positive is integer range 1 to integer'high;

BN

in the IEEE.STD_LOGIC_1164 package:

subtype std logic is resolved std uLogic;

subtype X01 is resolved std ulogic range 'X' to '1l';

subtype X01Z is resolved std ulogic range 'X' to 'Z';
subtype UX0l1 is resolved std ulogic range 'U' to '1l';
subtype UX01Z is resolved std ulogic range 'U' to 'Z';

subtype byte is std ulLogic_ vector (7 downto 0);
subtype word is std ulLogic vector (15 downto 0) ;
subtype long word is std uLogic_vector (31 downto 0);

architecture a of e is

begin

end a;

BN
subtype BCD digit is unsigned(3 downto 0);
subtype my counter type is unsigned(9 downto 0);
subtype sine wave type is signed (15 downto 0);

page 5

signal sl1, s2, s3: std ulogic;
signal sigl: std ulogic;
signal sig2: std ulogic;
signal sig3: std ulogic;

signal logic out: std ulogic;
signal open drain out: std logic;
signal tri state out: std logic;

signal counter: unsigned(nb bits-1 downto 0) ;
signal double: unsigned(2*nb bits-1 downto 0);
signal sine: signed(nb bits-1 downto 0);

signal clock internal: std ulogic

page 7

Variable declaration

[N

p: process (s_list)

begin

end process p;

variable v1, v2, v3: std ulogic;
variable varl: std ulogic;
variable var2: std ulogic;
variable var3: std ulogic;

variable counter: unsigned(nb bits-1 downto 0);
variable double: unsigned(2*nb bits-1 downto 0);
variable sine: signed(nb bits-1 downto 0);

page 8

Constant declaration

architecture a of e is

begin

end a;

package p is

end p;

constant bit nb: positive :=
constant min value: positive
constant max value: positive

constant bit nb: positive
constant pattl: unsigned(bit nb

4 .
0;
= 2%*bit nb

-1 downto 0) := "0101";

constant patt2: unsigned(bit nb-1 downto 0) := "1010";

constant address nb: positive

constant data register address : positive
constant control register address : positive
constant interrupt register address: positive
constant status register address : positive

constant clock period: time
constant access time: time
constant duty cycle: time

constant reaction time:

time

constant teaching period: time

page 6

Concurrent
statements

Signal assignment
Process statement
When statement
With statement

page 9

Process statement

architecture a of e is

begin

end a;

mux: process(sel, x0, x1)

begin
if sel = '0' then
y <= x0;
elsif sel = 'l' then
y <= xX1;
else
y <= 'X';
end if;
end process mux;

count: process (reset, clock)
begin
if reset = '1l' then
counter <= (others => '0');
elsif rising edge(clock) then
counter <= counter + 1;
end if;
end process count;

page 11

When statement

architecture a of e is

begin

end a;

y <= x0 when sel '0' else
x1 when sel = '1l' else
|X|;

y <= x0 after 2 ns when sel = '0' else
x1 after 3 ns when sel = '1';

page 12

Signal assignment

architecture a of e is

begin

end a;

vl <= a;
y2 <= a and b;
y3 <= to_integer(a);

<= "00000011"™;

<= "Q0000" & "OO1l1";

<= ('0', '0','0', '0','0', lOl’ lll’ lll),.
<= (7 downto 2 => '0', 1|0 => '1');

<= (7 downto 2 => '0', others => '1"');

<= a;

<= a after 2 ns;
<= inertial a after 1 ns; @
<= transport a after 4 ns;

<= reject 1 ns inertial a after 5 ns;

<= '0',
y <= a and b after 5 ns; '1' after 2 ns,

- ! r 4 ns,
X! 10 ns,
'1' arfer 15 ns,

'-' after 23 ns;

page 10

With statement

architecture a of e is

begin

end a;

mux: with sel select

when
when
when
when
'X'" when

"oo",
no1v,
"1o",
"1,

others;

decoder: with binary code select

y <= transport "0001"
	0010	
	0100	
	1000	
	XXXX	I

after 2 ns when

5 ns when
3 ns when
after 4 ns when

when others;

page 13

||00||,
||01||,
||10||,
||11||,

Sequential
statements

Variable assignment
If statement

Case statement
Loop statement

page 15

Variable assignment

[N

p: process (s_list)

begin

end process p; ' '

y3 := to_integer(a);

page 16 page 14

If statement Loop statement

B B

p: process (s_list) p: process (s_list)

begin begin

end process p;

end process p;

if gate = '1l' then
q <= d;
end if;

if sel = '0' then
vyl <= x0;
<= x1;
<= '0':

for xIndex in 1 to xSize loop
for yIndex in 1 to ySize loop
if xIndex = yIndex then
y (xIndex, yIndex) <= '1';
else
y (xIndex, yIndex) <= '0';
end if;
end loop;
end loop;

if sel = '0' then
y <= x0;

else
vy <= x1;

end if;

if sel = 0 then

y <= x0;
elsif sel = 1 then multipl: for indexB in 0 to nBits-1 loop

y <= X1; partialProd: for indexA in nBits-1 downto 0 loop
elsif sel = 2 then partProd(indexA) <= a(indexA) and b (indexB) ;

y <= X2; end loop partialProd;
else if (a = '0') and (b = '0') then cumSum (indexB+1) <= cumSum(indexB) + partProd;

y <= X3; y <= '1"'; end loop multipl;
end if; else

y <= '0"';
end if;

page 17 page 19

page 20

Case statement

p: process (s_list)

begin

end process p;

[N

case sel is

when
when
when
when
when

llooll
llolll
llloll
llllll

others =>
end case;

case value is

when
when
when
when
when

1 =>
2|3 =>
4 to 7 =>
8 to 15 =>
others =>

end case;

case opCode is
when add =>

when sub =>

when others
end case;

case to integer(sel) is

when >
when >
when >
when =y
when others
end case;

Yy

page 18

x0 after 1

Operators

Logic operators
Arithmetic operators
Comparisons
Concatenation

page 21

Arithmetic operators

operator description
+ addition
- substraction
* multiplication
/ division
** power
abs absolute value
mod modulo
rem reminder of the division
sla arithmetic shift left
sra arithmetic shift right

maxUnsigned <= 2**nBits - 1;
maxSigned <= 2** (nBits-1) - 1;

page 23

Comparisons

Logic operators

operator description
= equal to
/= not equal to
< smaller than
> greater than
<= smaller than or equal to
>= greater than or equal to

if counter > 0 then
counter <= counter -1;
end if;

if counter /= 0 then
counterRunning <=
else
counterRunning <=
end if;

page 24

operator description
not inversion
and logical AND
or logical OR
Xor exclusive-OR
nand NAND-function
nor NOR-function
xnor exclusive-NOR
sli logical shift left
srl logical shift right
rol rotate left
ror rotate right

if (a = '1l"'") and (b = '1l') then
y <= 1

else
y <= 0 ;

end if;

if (a and b) = '1l' then
y <= '1';

else
y <= '0';

end if;

count <= count sll 3;

page 22

Concatenation

operator description

& concatenation

address <= "1111" & "1100";w

constant CLR: std logic vector (1l to 4)
constant ADD: std logic_vector(l to 4)
constant CMP: std logic vector (1l to 4)
constant BRZ: std logic vector (1l to 4)

constant RO : std logic vector (1l to 2)
constant DC : std logic vector (1l to 2)

constant reg : std logic
constant imm : std logic

lOl,.
lll,.

type ROMArrayType is array(l to 255)
of std logic vector(l to 9);

constant ROMArray: ROMArrayType := (
0 => (CLR & DC & RO & reg),
1 => (ADD &"01"& RO & imm),

2 => (CMP &"11"& RO & imm),
3 => (BRZ & "0001" & '-'),
4 to romArray'length-1 => (others =>

"0000" ;
"0001";
"0010";
"0011";

IIOOII;

n__nmn.
7

lOl)),.

page 25

Attributes

Type related attributes
Array related attributes

page 27

Type related attributes

attribute result
T’base the base type of T
T’left the left bound of T
T’right the right bound of T
T’high the upper bound of T
T’low the lower bound of T
T’pos(X) the position number of X in T
T’val(N) the value of position number N inT
T’succ(X) the successor of Xin T
T’pred(X) the predecessor of Xin T
T’leftOf(X) the element left of Xin T
T’rightOf(X) the element right of Xin T

begin

signal counterInt: unsigned;
signal countl: unsigned(counter'range) ;
signal count2: unsigned(counter'length-1 downto 0)

flip: process(countl)

for index in countl'low to countl'high loop
count?2 (index) <= countl (countl'length-index) ;
end loop;
end process flip;

page 28

page 26

Array related attributes Wait statement

attribute result
AN
Aleft the left bound of A p: process
A’right the right bound of A begin
A’high the upper bound of A
end process p;
A’low the lower bound of A
A’range the range of A
A’reverse_range | the range of A in reverse order test: process B
bea

A’length the size of the range of A eg:thode < 10" test: process

dataByte <= "11001111"; begin or

startSend <= '1'; 2 :; |0|t

wait for 4*clockPeriod;
startSend <= '0';
wait for 8*clockPeriod;
testMode <= '1'; a <o 11t
[N dataByte <= "11111100"; b oee 110,
startSend <= '1';) "
wait for 4*clockPeriod; wait for simulStep;
startSend <= '0'; error <=y xor '1Y;
wait;
end process test;

wait for simulStep;
error <= y xXor '0';

type stateType is (reset, wait, go);
signal state: stateType;

end process test;
evalNextState: process (reset, clock)

begin
if reset = 'l' then
state <= stateType'left; D

elsif rising edge(clock) then test: process
- begin

playVectors: for index in stimuli’range
dataByte <= stimuli (index) ;
wait for clockPeriod;
assert codedWord = expected (index) ;
wait for clockPeriod;

end loop playVectors;

wait;

end process test;

end if;
end process evalNextState;

page 29 page 31

Assert statement

[N

p: process

begin

end process p; ' '

assert output = '1';

assert output = '1'
report "output was '0'!";

assert output = '1'

report "output was '0'!"

severity error;

in the STD.STANDARD package:

type severity level is (note,
warning,
error,
failure) ;

page 32

Simulation
elements

Wait statement
Assert statement

page 30

Lexical elements
Declarations

Index

1
3

Concurrent statements 9

Sequential statements
Operators

Attributes

Simulation elements

15
21
27
29

Arithmetic operators
Array related attributes
Assert statement
Case statement
Comparisons
Concatenation
Constant declaration
If statement

Logic operators
Loop statement
Process statement
Reserved words
Type declaration
Type related attributes
Signal assignment
Signal declaration
Subtype declaration
Variable assignment
Variable declaration
Wait statement
When statement
With statement

23
29
31
18
24
25

17
22
19
11

28
10

16

30

12
13

VHDL syntax

shortform

Francois Corthay, HEVs, 4/25/02

