Kart

From FSI
Revision as of 15:28, 1 June 2015 by Oliver.gubler (Talk | contribs)
Jump to: navigation, search

Contents

The Kart module (214_Pr1) is a Summer School module for students between 2. and 3. semester. It's a home-made car remotely controlled by a smart-phone.

Summer School '13
Summer School '12
Summer School '09
Summer School '05
Summer School '04

Demo Kart

The work of the students can be summarized in four main tasks:

  • design and assembly of the chassis
  • analysis of the motor driver circuits (DC and stepper)
  • configuring the controlling FPGAs
  • completing and extending the GUI on the smart-phone

System Architecture

The kart is controlled by a smartphone via Bluetooth.

Distributed boards

A Bluetooth receiver on the kart communicates via an RS232 serial link with the FPGA control board.

The control is distributed over several FPGA boards connected together via I2C:

  • An I2C master receives RS232 controls, stores them in a set of registers and dispatches them at a regular interval on the I2C. The master also reads data values from the I2C, stores them into a second set of registers and sends the corresponding information at a regular rate over the RS232.
  • A DC motor controller receives a speed value and builds a PWM and a direction control.
  • A stepper motor controller receives the desired angle and builds the coil controls signals.
  • A sensor board manages I/O comprising proximity sensors, hall sensors (for the driving speed) and LEDs.

Bluetooth communication

A Bluetooth communication transfers serial port data. A receiver chip creates the RS232 signals for the FPGA. The protocol defines how the registers are accessed.

Components

FPGA Boards

The FPGA motherboards are equipped with an AGL125 IGLOO in a VQ100 package. They connect to daughterboards which drive different parts of the Kart. The motherboards are interconnected via an I2C link.

Existing daughterboards are:

Sensors

The sensors connected to the I/O board are:

Additionally, the power supply board comprises an ADC which provides the battery level.

Tasks

The presentation Programming Introduction gives you an overview about the structure of the software/hardware and your tasks.

FPGA Design

You'll get the FPGAs preprogrammed with a functional solution.

In addition you'll get HDL-Designer projects, which you have to complete or adapt.

Setup

View-pim-tasks.png

Download the ELN_kart.zip and unpack it to your U:\ drive.

Dialog-warning.png

Make sure that there is no space character in the path to ELN_kart.

Android App

One goal is to implement an Android application that controls and monitors the kart.

Introduction

The installable package of the (or rather a) solution can be found here: Kart.apk

Android

An introduction to Android can be found here: Android Introduction

Another sample project to learn how to create vertical seek bars: Vertical SeekBar Example

Starting point

You can download the Kart eclipse project with the basic interface here: Kart.zip

You can find the instructions how to import that archive into Eclipse in the "Programming Indtroduction" presentation...

Additional Information

Personal tools
Namespaces
Variants
Actions
Navigation
Modules / Projects
Browse
Toolbox